If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-96x+45=0
a = 16; b = -96; c = +45;
Δ = b2-4ac
Δ = -962-4·16·45
Δ = 6336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6336}=\sqrt{576*11}=\sqrt{576}*\sqrt{11}=24\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-24\sqrt{11}}{2*16}=\frac{96-24\sqrt{11}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+24\sqrt{11}}{2*16}=\frac{96+24\sqrt{11}}{32} $
| 7/3x-5=30 | | -14x+3(2x+5)=-18-7x | | 8y-6+32+90=180 | | 5/7x+1/6x=407 | | -7v=-9v+6 | | 9=3-3t | | .36m+128.88=160.92 | | 12x-1=3x+17 | | X-2(x+3)=2(x+1)-4 | | 4r=5r+1 | | x2x+3=−1 | | 5/7x-6=4 | | 12=15-3y | | -5c+6=-2-4c | | 3=9-2t | | 0.01(5793-470v)=1 | | -5c+6=-2−4c | | 17+a=61 | | 198=-4x+2(-6x | | (4x+5)=180-41 | | a-(.5a-3)=23 | | -2t=8-t | | 8=3c-1 | | 6.2+y/5=-6.3 | | -32+14y=4 | | .3m+179.4+.6(179.4)=220.14 | | 4.3+y/5=-8.2 | | 3y-16=49 | | 9+2z=-19 | | 6−3v=-2v | | -5s=-4s+8 | | 224=157-u |